Cantu Lab at UC Davis

Department of Viticulture & Enology

Main menu: Home | People | Projects | Data | Publications |

sample header image

Grapevine trunk diseases


Morales-Cruz A., Allenbeck G., Figueroa-Balderas R., Lawrence P.D., Baumgartner K., Rolshausen P.E., and D. Cantu (2017) Metagenomics and metatranscriptomics enable in planta profiling of species composition and virulence activities of trunk pathogen communities. Molecular Plant Pathology DOI: 10.1111/mpp.12544

Massonnet M., Figueroa-Balderas R., Galarneau E.R.A., Miki S., Lawrence D.P., Sun Q., Wallis C.M., Baumgartner K. and D. Cantu (2017) Neofusicoccum parvum colonization of the grapevine woody stem triggers asynchronous host responses at the site of infection and in the leaves. Frontiers in Plant Science. 8:1117. doi: 10.3389/fpls.2017.01117

Massonnet M., Morales-Cruz A., Figueroa-Balderas R., Lawrence D.P, Baumgartner K., and D. Cantu. (2016) Condition dependent co-regulation of genomic clusters of virulence factors in the grapevine trunk pathogen Neofusicoccum parvum. Molecular Plant Pathology DOI: 10.1111/mpp.12491

Morales-Cruz A., Amrine K.C.H., Blanco-Ulate B.; Lawrence D.P., Travadon R., Rolshausen P., Baumgartner K., and D. Cantu (2015) Distinctive expansion of gene families associated with plant cell wall degradation, secondary metabolism, and nutrient uptake in the genomes of grapevine trunk pathogens. BMC Genomics 16: 469

Block K.L., Rolshausen P., and D. Cantu (2013) In search of solutions to grapevine trunk diseases through “crowd-sourced” science. Frontiers in Plant Science 4: 394

Blanco-Ulate B., Rolshausen P., and D. Cantu (2013) Draft genome sequence of the ascomycete Phaeoacremonium aleophilum strain UCR-PA7, one of the causal agents of the esca disease complex in grapevines. Genome Announcements 1(3):e00390-13

Blanco-Ulate B., Rolshausen P., and D. Cantu (2013) Draft genome sequence of Neofusicoccum parvum (isolate UCR-NP2), a fungal vascular pathogen associated with grapevine cankers. Genome Announcements 1(3):e00339-13

Blanco-Ulate B., Rolshausen P., and D. Cantu (2013) Draft genome sequence of the grapevine dieback fungus Eutypa lata (UCR-EL1). Genome Announcements 1(3):e00228-13

Other relevant publications:

Xiaodong W., Yang B., Kang Z., Cantu D., and J. Dubcovsky (2017) A conserved Puccinia striiformis protein interacts with wheat NPR1 and reduces induction of pathogenesis-related genes in response to pathogens. Molecular Plant Microbe Interaction 2:977-989

Cantu D., Segovia V., MacLean D., Bayles R., Chen X., Kamoun S., Dubcovsky J., Saunders D.G.O., and C. Uauy (2013) Genome analyses of the wheat yellow (stripe) rust pathogen Puccinia striiformis f. sp. tritici reveal polymorphic and haustorial expressed secreted proteins as candidate effectors. BMC Genomics 14:270

Cantu D., Govindarajulu M., Kozik A., Wang M., Chen X., Kojima K.K., Jurka J., Michelmore R.W., and J. Dubcovsky (2011) Next generation sequencing provides rapid access to the genome of Puccinia striiformis f.sp. tritici, the causal agent of wheat stripe rust. PLoS one 6:e24230

Microorganisms and berry metabolism


Blanco-Ulate B., Hopfer H., Figueroa-Balderas R., Ye Z., Rivero R.M., Albacete A., Perez-Alfocea F., Koyama R., Anderson M.M., Smith R.J., Ebeler S.E., and D. Cantu (2017) Red blotch disease alters grape berry development and metabolism byinterfering with the transcriptional and hormonal regulation of ripening. Journal of Experimental Botany 68 (5): 1225-1238

Blanco-Ulate B., Amrine K.C.H., Collins T.S., Rivero R.M., Vicente A.R., Morales-Cruz A., Doyle C.L., Ye Z., Allen G., Heymann H., Ebeler S.E., and D. Cantu (2016) Developmental and metabolic plasticity of white-skinned grape berries in response to Botrytis cinerea during noble rot. Plant Physiology 169:2422-2443

Blanco-Ulate B., Vincenti E., Powell A.L.T, and D. Cantu (2013) Tomato transcriptome and mutant analyses suggest a role for plant stress hormones in the interaction between fruit and Botrytis cinerea. Frontiers in Plant Science 4, 121.

Blanco-Ulate B., Morales-Cruz A., Amrine K.C.H., Labavitch J.M., Powell A., and D. Cantu (2013) Genome-wide transcriptional profiling of Botrytis cinerea genes targeting plant cell walls during infections of different hosts. Frontiers in Plant Science 5, 435.

Other relevant publications:

Cantu D., Blanco-Ulate B., Yang L., Labavitch J.M., Bennett A.B., and A.L.T. Powell (2009) Ripening regulated susceptibility of tomato fruit to Botrytis cinerea requires NOR but not RIN or ethylene. Plant Physiology 150:1434-1449

Cantu D., Vicente A.R., Greve L.C., Dewey F.M., Bennett A.B., Labavitch J.M., and A.L.T. Powell (2008) The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. Proceedings of the National Academy of Sciences 105: 859-864

Grape powdery mildew


Pap D., Riaz S., Dry I.B., Jermakow A., Tenscher A.C., Cantu D., Olah R, and MA Walker. Identification of two novel powdery mildew resistance loci, Ren6 and Ren7, from the wild Chinese grape species Vitis piasezkii. BMC Plant Biology 16: 170

Amrine K.C.H., Blanco-Ulate B., Riaz S., Pap D., Jones L., Figueroa-Balderas R., Walker M.A., and D. Cantu. (2015) Comparative transcriptomics of Central Asian Vitis vinifera accessions reveals distinct defense strategies against powdery mildew. Horticulture Research 2

Jones L., Riaz S., Morales-cruz A., Amrine K.C.H., Mcguire B., Gubler W.D., Walker M.A., and D. Cantu (2014) Adaptive genomic structural variation in the grape powdery mildew pathogen, Erysiphe necator. BMC Genomics 15: 1081

Wine grape genomics

Relevant publications:

Minio, A., Lin, J., Gaut, B. S., and D. Cantu (2017) How single molecule realtime sequencing and haplotype phasing have enabled reference-grade diploid genome assembly of wine grapes. Frontiers in Plant Science 8, 16

Chin C.-S., Peluso P., Sedlazeck F.J., Nattestad M., Concepcion G.T., Clum A., Dunn C., O'Malley R., Figueroa-Balderas R., Morales-Cruz A., Cramer G.R., Delledonne M., Luo C., Ecker J.R., Cantu D., Rank D.R., and Schatz M.C. (2016) Phased diploid genome assembly with Single Molecule Real-Time Sequencing. Nature Methods 13:1050-1054